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Abstract

The present study applies a hybrid numerical algorithm of the Laplace transform technique and the finite-difference method with a
sequential-in-time concept and the least-squares scheme to predict the unknown surface condition from the theory of dynamic thermal
stresses. The unknown surface condition is not given a priori and is assumed to be the function of time before performing the inverse
calculation. The whole time domain is divided into several analysis sub-time intervals and then the unknown surface condition on each
analysis interval can be estimated from the transient displacement measurements or the transient temperature measurements. In order
show the efficiency and accuracy of the present inverse scheme, the comparison between the present estimates, the exact solution and t
previous estimated results is demonstrated. The results show that a good estimation on the unknown surface condition can be obtained onl
at one selected location even for the case with the measurement error. The effect of the measurement location and the measurement error w
also be investigated.

0 2003 Elsevier SAS. All rights reserved.
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1. Introduction solve the IHCP. A few investigators [7,8] predicted the un-
known surface condition from the viewpoint of the thermal
It is usually assumed that the boundary conditions are stresses theory. Grysa et al. [7] applied the thermal stresses
accurately given in both theoretical and industrial applica- theory in conjunction with the Laplace transform method to
tions. In many heat transfer situations, however, it is difficult investigate the inverse problem of the temperature field from
to measure the approximate boundary conditions of a realthe temperature, heat flux and displacement measurements
problem such as combustion chambers, nuclear reactorsinside the solid. It can be observed from their work that the
heat exchangers and re-entry vehicles, and so on. Thus sucknversion of the unknown surface temperature in the trans-
a problem has gradually become an interesting subject. Inform domain was complicated. Thus it is difficult to invert
general, the inverse heat conduction problems (IHCP) werethe unknown surface temperature in the transform domain to
regarded as the estimation of the surface temperature andhe physical quantity. In order to obtain a more accurate es-
the heat flux from measured temperatures inside the con-timated result, the measurement location can necessarily be
ducting material. To date, many methods [1-5], such as the|ocated near the position of the unknown boundary condi-
regularization, conjugate gradient and function specification tion. In addition, their estimated results were also sensitive
methods, have been developed for the IHCP. Most of thesetg the internal measurements and the magnitude of the time
works were only restricted to the IHCP using the tempera- step. Blanc and Raynaud [8] applied a simple analysis in
ture measurements. However, the thermocouple may not be;onjunction with the quasi-static and uncoupled assumptions
the most appropriate sensor to obtain the internal measuretg estimate the unknown boundary condition of an inverse
ments. This means that the additional information given by problem using the thermal strain and temperature measure-
the moiré fringe photos or strain gages [6] can be tried 10 ments instead of the temperature measurements only.
The literature reviews showed that Sparrow et al. [9],
~* Corresponding author. Woo and Chow [10], Monde [11], Chen and Chang [12],
E-mail addresshtchen@mail.ncku.edu.tw (H.-T. Chen). Chen et al. [13-15] and Chen and Wu [16] applied the

1290-0729/$ — see front mattét 2003 Elsevier SAS. All rights reserved.
doi:10.1016/S1290-0729(03)00105-4



96 H.-T. Chen et al. / International Journal of Thermal Sciences 43 (2004) 95-104

Nomenclature

Cj undetermined coefficient At} dimensionless measurement time step,

co parameter= /2G (1 —v)/[p (1 — 2v)] = aAt,/L?

d; small value defined in Eq. (32) Atf dimensionless time step; a At, /£?

d; correction ofC; defined in Eq. (38) u displacement. . ...........coviiiiiiiiiii. m

F1(t)  unknown surface temperature i displacement in the transform domain defined jn

{Fr}  forcing matrix for the temperature field Eq. (17)

{F.}  forcing matrix for the displacement field {i}  global matrix of the nodal displacements in the|

G shear modulus _ transform domain

1 symbol for temperature or displacement i1 displacement in the transform domainat 0

]{‘?( } Sﬁ:@gﬁzﬁﬁott?gi é (rip_e:;ture field spatial coordinate. ........................ m

T .

(K. global matrix for the displacement field Xm measurement location..................... m

L thickness of thetestedslab ................ m Greek symbols

¢ distance between two neighboring nodes..... m thermal diffusivity . ... ... .. ..vv.... Ros1

M number of sub-time domains - . .

M; number of the discrete measurement times % coeff|c.|ent of linear thermal expansion

N degree of a polynomial guess function ¢ prescrlped accurac;_/ .

" total number of nodes & dlrr_1en5|onlt_ass spatial coordinatex/L

q unknown surface heat flux............ V2 v Poisson ratio 5

s Laplace transform parameter 0 density............coiiiiiii kg~

T temperature ..., °C o nOrmal Stress . ...........oooveinn. Thi-2

T temperature in the transform domain defined in ~ Fcur standard deviation with respect to curve-fitted
Eq. (16) results

{T}  global matrix of the nodal temperaturesinthe ~ 0exa  Standard deviation with respect to exact data
transform domain 1) averaged random error

t time ... S Subscripts

ty finaltime....................o ool s

10 initial measurementtime................... s cal calculated value

t discrete measurementtime . ................ s cur curve-fitted value

r* dimensionless times /L2 exa  exactsolution

Af,  measurementtimestep..................... s mea  measured data

Laplace transform method to predict the unknown surface vided the measurement error is not considered. In addition,
condition from the temperature measurements only. Most the estimated results of these previous works [13-16] also
numerical schemes for the IHCP may be sensitive to mea-displayed that the effects of the measurement time step and
surement noises. It is known that this sensitivity depends the measurement error on the estimates were not very signifi-
on the time step. In general, the smaller the time step, thecant. It can be found from the work of Chen and Wu [16] that
more ill-posed the problem. In order to improve this draw- the estimation of the unknown surface temperature obtained
back, Chen and Chang [12] introduced a hybrid scheme of from the present inverse scheme is also in good agreement
the Laplace transform and finite-difference methods to esti- with experimental temperature data [17]. Li [17] applied
mate the unknown surface temperature in one-dimensionalthe implicit finite-difference method in conjunction with the
IHCP using the measured temperatures inside the materialinear least-squares errors method to predict the unknown
without measurement errors. Similarly, the measurement lo- surface temperature with the Dirichlet boundary conditions.
cation had better be located near the position of the unknownlt can be observed that Li's predicated results [14] did not
boundary condition in order to obtain a more accurate esti- agree well with his experimental temperature data for short
mated result. Due to this drawback, Chen et al. [13-15] and times.

Chen and Wu [16] applied the similar scheme in conjunc-  The present study applies the similar hybrid method [13—
tion with a sequential-in-time concept and the least-squares16] to estimate the unknown boundary condition from the
method to estimate the unknown surface condition from theory of dynamic thermal stresses using the displacement
the temperature measurements. It can be observed from theand temperature measurements. Due to the application of
works of Chen et al. [13—-15] and Chen and Wu [16] that the Laplace transform, the stability limitAz/¢2 does not

the estimates of the unknown surface condition are in good appear in the present inverse scheme. In order to show
agreement with the exact solution of the direct problem pro- the efficiency and accuracy of the present inverse scheme,
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or _

o(L,H)=0 — N =0 where the parametekg andco are defined agg = ((1 +
T(LL”)f;’ —> . — u=0 1)/(1—v))ey andco = /2G(A—v)/[p(X—2v)]. 7 is the
9(L0=" final time.

The one-dimensional heat conduction equation with con-

=L x=0 .
* stant thermal properties can be expressed as
Fig. 1. Schematic diagram of the inverse problem. 2
o7 _ 19T in0 L,0<r<t 4)
— =—— <x<L,0< 3
Ix2  « ot S

problems with various types of the boundary conditions ) o
will be illustrated. Methods using the temperature and Where is the thermal diffusivity. . _
displacement measurements are respectively denoted as the The present inverse problem is subject to the following

T - andu-methods. boundary conditions and the initial conditions.
aT (0
; D 0 and T(L.1)= Fu(t) 5)
X

2. Mathematical formulation 4(0.6)=0 and o(L.t)=0 ©6)

The mathematical formulation and the basic assumptionsand
established in the present study come from the work of du(x, 0)
Grysa et al. [7]. The IHCP investigated here involves the 7(x.0)=0, u(x,00=0 and =
estimation of the unknown surface condition at the surface
x = L from the transient displacement and temperature
measurements inside the body. The present study is limited
to the unidirectional problem, as shown in Fig. 1. A slab with
the finite thicknesd., initially at a uniform temperature, is
insulated at the surface = 0, while the surface at = L
is heated uniformly. For the direct problem, the temperature
and displacement fields can be determined provided that the
surface conditions at = 0 andx = L are given. However, ) N ] .
one of the surface conditions is unknown for the inverse [N order to obtain the additional information, the mea-
problem. This unknown surface condition can be estimated SUred temperature history or the measured displacement
provided that the additional information of the transient Nistory at a certain location of the tested material can be
temperature measurements or the transient displacemen@Ptained by using the thermocouple or the moiré fringe pho-
measurements can be obtained. In order to demonstrate th&S [6]. These temperature and displacement measurements
flexibility of the present inverse scheme, various types of the &re; respectively, denoted Bhea(xyn, ) andumeaxm, 1),
boundary conditions will be illustrated in the present study. 7 =0, ..., M; —1, wherex,, is the measurement locatiap,

The relationship of the stress(x, 1), the displacement IS the dlscrgte measurement tlme_dv}d denotes the num-
u(x, ) and the temperaturé (x, ) can be obtained from ber of the discrete measurement times. It worth mentioning
the one-dimensional Duhamel-Neumann equation with con- that these interior measurements can be taken from an initial
stant material properties in terms of the shear modGl({ig, measurement timg (#, > 1o) for the presentinverse scheme.
18]. In real industrial applications, the experimental measured

values often exhibit random oscillations due to experimental
o(x, 1) = [(1_ V) — 1+ v T(x, t)} (1) uncertainty [16,17]. Thus, in order to simulate the experi-
1-2v mental measured dataneaxm, &) andumesxm, t-) can be
wherer is time, x is the spatial coordinate, is the Poisson ~ Modified by adding small random errors to the exact solu-
ratio and; is the coefficient of linear thermal expansion.  tion of the direct problem. On the other harfhed(x, 7)

It is assumed that the motion of particles of the body is @Ndumea(xn, ) used in the present inverse analysis can be
slow. Thus the conservation principle of linear momentumin €xpressed as
the absence of the body force may be written in the form [18]

o ()

Assume thatFy(¢) in Eq. (5) is unknown. It can be esti-
mated provided that the interior temperature measurements
or the interior displacement measurement in the slab can be

iven.

. Numerical analysis

2G

du(x,t)
0x

ImedXm» tr) = lexa(Xm, tr)(1+w) forr=0,...,M, -1
o (x,1) 3%u(x, 1)
= 2 (8)
ax T a2 @
wherep is the density.
The substitution of Eq. (1) into Eq. (2) yields the equation
of motion in the displacement as

wherel denotes the temperatufeor the displacement. »
represents the averaged random error.

An approximate polynomial function in conjunction with
the least-squares method can be used to fit the experimental
%u 1 0% oT measured data [19]. The curve-fitted values are obtained

a2 2o kogr INO0<x <L, O<rsyy () from this polynomial function.
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The standard deviations of the temperature and displace-where ¢ = L/(n — 1) denotes the distance between two
ment measurements with respect to the exact solution andneighboring nodes and is uniform.is the total number of
the curve-fitted values of the experimental measured data arenodes.

respectively defined as [19] Elimination of 7o between Eq. (19) far=1 and Eq. (20)
L M 12 gives
2 ~
Oexa= = Z (Imea(xnu 1) — Iexa(Xm, fr)) i| 9 1 S\ ~ T
M| = —<€—2+£)T +£—2=O (24)
and ~ . .
- 12 whereT; denotes the temperature in the transform domain
1|~ 2 atx =0. _
Ocur = M, Z (Imedxm. tr) = Teur(xm. 1r)) } (10) Eliminating theT, 1 term of Egs. (18) and (19) far=n
L r=0

and then canceling th&,,1 term of the resulting form and
The method of the Laplace transform is applied to remove Eq. (23) can give

the time-dependent terms from the governing differential 5

equations and the boundary conditions. Thus, the Laplace2”" 1 (2 s >~

Up
transforms of Egs. (3)—(6) with respect#an conjunction e e
with EC]S (1) and (7) are B kOTn—l slko ko 2(1+ v)a; f (25)
i s?2_ dT L 20 ¢ (d-we "
— — siu=ko—— forO<x<L (11) )
dxs  ¢f dx The arrangement of Egs. (19), (21) and (24) can yield the
2T matrix equation for the nodal temperatures as
———T 0 forO<x<L 12 ~
dx?2  « 12) [Kr|{T} ={Fr} (26)
th The arrangement of Eqgs. (18), (22) and (25) yields the
dT (0, ~ ~ i i i
é s) —0 and T(L.s)= Fi(s) (13) matrix equation for the nodal displacements as

g (K.} = {Fu) (27)

and

y where [K7] and [K,] are the matrices with the Laplace
u(0, S) (14) parametes for the temperature and displacement fields, re-
_ ~ _ spectively.{T'} and {ii} are the matrices representing the
4 V) (L ) = Q4T (L, =0 (15) unknown nodal temperatures and displacements in the trans-
form domain.{Fy} and{F,}, respectively, are the matrices

wheres is the Laplace transform parametér.andii are ; ) :
representing the forcing terms for the temperature and dis-

defined asoo placement fields. It should be noted that the forcing term
~ . {F,} involves the transformed nodal temperatu®sing to
T(x,s) Z/T(X’t)e dr (16)  the uncoupled assumption in the present study, the direct

0 Gauss elimination method can be first applied to determine
and the transformed nodal temperatures from EB6). After-

00 wards, in accordance with these obtained transformed nodal
- _ st temperatures, the transformed nodal displacements can be
ux S)_/M(x’[)e d (7 obtained from Eq(27). The resulting transformed nodal

0 temperatures and nodal displacements can be inverted to

The finite-difference forms of Egs. (11)—(15) are given as the physical quantities using the numerical inversion of the
~ Laplace transfornj20—22] For the T -method, only Eq26)

Uit = 20 +iti-y fﬁi _ ol — Tz is applied to perform the inverse calculation. However, both
€2 CS 2t Eqgs.(26)and (27) must be solved for the-method
fori<i<n (18) The unknown surface temperatufg(z) is assumed to
ﬁ+l —2Ti+Ti-1 s~ ) be the function of time before performing the inverse
02 - gTi =0 forl<i<n (19) calculation. However, it is not easy to obtain an approximate
T — T (20) polynomial function that can completely fit this unknown
2=1o . : . .
~ ~ o~ function Fy1(r) over the whole time domain considered.
T(L,s)=1Tn = F1(s) (21) Under this circumstance, a sequential-in-time procedure can
(0,5)=u1=0 (22) be introduced to estimat#yi(z). On the other hand, the
and whole time domainr < ¢ < ¢y will be divided into M

~ sub-time domains. The discrete measurement timean
A —-v)@pt1 —p—1) — 261 4+v); 7,, =0 (23) be defined ag. =19 +rAt. r =0,1,..., M; — 1), where
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the measurement time stey, is defined asAz, = (1 — whered; = C* — C; is a small value corresponding .
10)/(M; — 1). Due to the application of the Laplace transform The symbobs j; is Kronecker delta.
in the present studyp is not always the initial time = 0. Similarly, the new calculated valuéca,(xm, t,) with

The unknown surface temperatufg(s) on each analysis  respect toi?;‘ shown in Eq. (32) can also be determined from

interval can be approximated by th@v — 1)th degree  Eq. (26) or Eq. (27). Deviations betwed, (x, ) and
polynomial guess function of time and is expressed as Ieur(xm, t-) ON each analysis interval < #, < tiin_1 (i =

N OON—-1,2(N—-1),...,M; — N) can be written as
Fo=Y Citi 1 28 ; ,
; ! ( ) eézlé’al(xﬂhtr)_ICUr(xl‘natr) for]’p:]'a 27"'5N (33)

is estlmated usmg the least- -squares method in conjunct|on31cal/3C can be expressed as
with the measured data on each analysis interval. Based on 51 P
the definitions ofN, M and M;, the M, value is equal to a,;) _ Pleal _ M
“MN— M +1". ac; €7 =C;

.T_he_ least-squares minimization technique 'S a|_opl|ed 0 The substitution of Egs. (30), (32) and (33) into Eq. (34)
minimize the sum of the squares of the deviations be- .

. yields

tween the calculated values and the curve-fitted results
at the measurement locatiar),. The error in the esti-

forj,p=1,2,...,N (34)

ep,—e
mateE(C1, Co, ..., Cy) on each analysis interval < ¢, < wp = pd‘ : (35)
tiyn—1 (i =0,N —1,2(N —1),..., M; — N) can be ex- !
pressed as Substituting Eq. (34) into Eq. (31) yields
E(C1,C2,...,CN) N
N1 12 Gom tr) = Teal(Xm, 1) + Y wpd?
2 ,
= Y [ealCom tr) = lour(xm, 1r)] (29) j=1

r=i forp=r—i+1,i<r<i+N-1 (36)
wherelca|(xm_, t,) denotes the calcul_ated te_mperature or the whered* = dC; denotes the new correction of,.
calcula_ted dlsplgcemenlcur(xm,_t,) is obtained from the Substituting Egs. (30) and (33) into Eq. (36) yields
curve-fitted profile of the experimental measured data. The
estimated values of; (j =1,2,...,N) are determined N
provided that the value aE(C1, Ca. ..., Cy) is minimum. €y =ep+ Y _wpdf forp=12,....N (37)
The computational procedures for estimating the unknown j=1

coefficientC; (j =1,2,..., N) are described as follows. In accordance with Egs. (29) and (33), the error in the

First, the initial guesses of; (j =1,2,...,N) are ;
. X : AN : estimateE (C1 + AC1,C2+ ACy, ..., C ACy) can be
given. Afterwards, the calculated temperatures and displace- (CL+ACL C2+AC N +ACN)

. . expressed as
ments atk = x,, are, respectively, determined from Egs. (26) P
and (27). Deviations ofcyr(x,,, 1) andIca(x,,, ) on each ]
N . AY3
analysis interval; < 7, < fizn—1 (i = O0,N — 1,2(N — E= E (e) (38)
1),..., M, — N) are expressed as

In order to yield the minimum value df with respect to
C;, differentiating E corresponding to the new corrections
d}* is performed. Thus the correction equations correspond-

The new calculated valug/,(x,.t) on each analysis ing to C; can be expressed as
intervaly; <t, <tjyn—1 (=0, N—-12(N-1),..., M; —

€p = Tcal(Xm, tr) — Tcur(Xm, tr)

forp=r—i+1, i<r<i+N-1 (30)

N N N

N) can be expanded in a first-order Taylor series as Z Zwﬁw;’dj __ Z‘”];EP fork=1,2,...,N (39)
j=1lp=1 p=1

I 01cal dC:

cal(x”“ tr) = lcal(Xm, 1r) + Z 3C/ J Eq. (39) is a set oN algebraic equations for the new correc-

tions. The new correctiong: are obtained from this equa-
forp=r—i+1,i<r<i+N-1 (32) i ! offici . *
p VIST S tion. Thereafter, the new coefficients©f, C; +d7, can be
In order to obtain the derivativelca/dC; in Eq. (31), the detgrmmed. The above numerical procedures are repeated
new unknown coefficient™ is introduced as until the value of|(fca(xm. 1) — Teur(Xm. 1))/ Teur(Xm. tr)]

is all less than a prescribed accuracyn the present study,
Ci=Cj+djsjx forjk=12..N (32) ¢ =0.001 is taken through all the examples.
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. 1.1
4. Numerical examples L xn=09L

1

]
3
®
;]
®

In order to demonstrate the accuracy and efficiency 0o L /< ,
X\ 7%

of the present inverse scheme in estimating the unknown L

surface condition from the knowledge of the temperature 0.8 — /}(\\
measurements or the displacement measurements at any B f,’ —— x»=07L
selected location of the tested material, various examples T A

will be illustrated. These temperature measurements or s

the displacement measurements can be obtained by using E] )
the thermocouple or the moiré fringe photos [6] from an

Exact

e . . oK ———6—— Present estimate using T-method
initial measurement time). In all the test cases considered 04 /,' ——5—— Present estimate using u-method
here, the(N — 1)th degree polynomial guess function is - =~ %=~ Grysaetal.[7] using T-method
selected to approximate the unknown functidi(z) on °v3—ﬁ =77 Gsaetal [7] using u-method
each sub-time domain. The numerical data used in the 02

present study come from the work of Grysa et al. [7]. -

The following data are taken for calculatiorg:= 1.19 x 01 =

108 m?s!, o« =119x 10°° m?s1, G = 7.9461x N P N R BRI S N
101°N-m=2, L =0.01 m,v = 0.3, p = 7.8 x 10° kg-m—3 0 5 10 20 2 30

15
anda, = 12 x 1076 deg™L. In the present study, the effect e
of the dimensionless measurement time step, space Sizegig. 2. Comparison of (L, 1) for Fy(1) =1, =0, M =3, Ate = 2 s and
initial guesses and measurement error on the estimation ofx, =0.
the unknown surface condition is also examined. All the
computations are performed with the uniform space 8ize  the comparisons of the unknown surface temperafure)

and T (L/2,t) among the present estimates, the estimates
4.1. Example 1 (Unknown surface temperature at L) of Grysa et al. [7] and the exact solution fer= 0 and
various Af, values at various measurement locations are,
It is assumed that the unknown surface temperature atrespectively, shown in Table 1 and Fig. 2. Table 1 shows
x = L, Fi(t), will be estimated in this example. In order the comparison among the present estimates, the estimates
to estimate this unknown surface temperatiitgr), the of Grysa et al. [7] and the exact solutidiyxs(L/2,t) for
additional information on the temperature measurements orn = 11,0 =0, M = 6 andAt, = 1 s(At} =11.9). It can be
the displacement measurements must be given. The fourthfound from Table 1 that the estimates of Grysa et al. [7] for
degree polynomial guess functigtv = 5) is selected to  the early time( < 1 s) can be poor even though the measure-
approximateFy () on each sub-time domain for this inverse ment location is close to the position of the estimated value.

calculation. The difference between the estimates of Grysa et al. [7] and

_ The Laplace transform of Eq. (28) fof =5 can yield  the exact solutioexa(L /2, 1) goes up to 131%. However,

F1(t) as the present estimates using theandu-methods agree well
with the exact solution over the whole time domain con-

Fils) = 25: CL]) (40) sidered forw = 0 even though the measurement location is
; Isi located far from the position of the estimated value. For most

=t of the previous works, the measurement location is generally
wherel'(j) is the Gamma function. located at the position close to the estimated value in order

The unknown coefficient; (j =1,2,...,5),usedtobe-  to obtain a more accurate estimate. The above results show
gin the iteration is taken as unityy =0 s andry =30 s that the present inverse scheme has good accuracy and good
are taken for the inverse calculation of this example. The efficiency for the present inverse problem.
temperature measurements or the displacement measure- In order to evidence the effect of the measurement time
ments are recorded everyz, value. For the convenience stepAt, or the dimensionless time stepr on the present
of the inverse calculation, the dimensionless tirfie the estimates fom = 11, w = 0 and M = 6. We find that the
dimensionless measurement time steff, the dimension-  present estimates usingz, = 0.5 s (A7 = 5.95) are in
less time stepAr), the dimensionless spatial coordingte  good agreement with those usifg, = 1 s (ArF = 11.9)

and the dimensionless measurement locagjprare intro- and the exact solutiofiexs(L /2, r) shown in Table 1. Thus,
duced. They are defined a$ = ar/L?, At* = aAt,/L?, these present estimates are not shown in this paper.

Aty = aAft, /2, & =x/L and&, = x,,/L. In order to evi- The comparison among the present estimates ferl1,
dence the accuracy of the presentinverse scheme, the inversg,, = 0, « =0, M = 3 and At, = 2 s (A1} = 238),
problem with the unknown surface temperattgr) = 1 the estimates of Grysa et al. [7] and the exact solution

proposed by Grysa et al. [7] is first illustrated. It is not very Texa(L,t) is shown in Fig. 2 using th&- andu-methods.
difficult to solve this inverse heat conduction problem. Thus The effect of the measurement location on the unknown



Table 1

Comparison off (L /2, ) between the present estimates, the estimates of Grysa et al. [7] and the exact solutiendfod/ = 6 andAf, =1s
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101

Grysaetal. [7]

Present estimates

Texa(L/2,1)

T-method T-method u-method
xm = 0.4L Xm = xm = 0.1L
1 0.2663 0.3075 0.3075 0.3075
2 0.4734 0.4980 0.4980 0.4980
3 0.6090 0.6268 0.6268 0.6268
4 0.7068 0.7218 0.7218 0.7218
5 0.7828 0.7926 0.7926 0.7926
10 0.9499 0.9522 0.9522 0.9522
15 0.9885 0.9890 0.9890 0.9890
20 0.9973 0.9975 0.9975 0.9975
1.50 15
125 __ oo Exact ¢ estimate using T-method (©=0 %) ——O&—— Present estimate using T-method (=0 %)
’ resentestimate using f-metio ——>—— Present estimate using u-method (©=0 %)
- — — X— — Present estimate using u-method (®=0 %) . .
. . _ — — A— — Present estimate using T-method (0 =5 %)
1.00 Present estimate using T-method (@ =5 %) : !
& Present estimate using u-method (=35 %) 10 ~ ~ B~ ~ Present estimate using u-method (&=5 %)
0.75
0.50
£ o
T
g 0.00

-0.25

-0.50

-0.75

Fig. 3. Comparison off' (¢ = 1, r*) for F1(t*) = sin(t*), &, = 0.1 and

variousw values.

surface temperaturB(L, t) or Fy(t) is also shown in Fig. 2.
It can be observed from these two figures that the effect A% =0.5,&, =0.1, M = 6 and various values is listed in
of the measurement location on the estimates of Grysa etFig. 3. Once the unknown surface temperature is determined,
al. [7] is not negligible. Their estimates [7] faf, = 0.9L
are obviously smaller than those fgf = 0.7L. This implies

that the estimates of Grysa et al. [7] using fhenethod are
more accurate than those using thenethod. However, the
present estimates using tifie andu- methods similarly are
allin good agreement with the exact solutibf(L, t). The
cubic spline interpolation can be selected to fit the predicted
values at =0, 1 and 2 s so that a single smooth curve can 4.2. Example 2: Unknown surface heat fiu¢ =1, r*)
be obtained on the time interval G < 1 s.

In order to evidence the efficiency of the present inverse
scheme further, the case with the unknown surface temper-—%—glgzl = sin(¢*) is illustrated. In order to predict the un-
atureT (¢ = 1,t*) = sin(t*) and the measurement error is known surface temperatu@®¢ = 1, t*), the fourth degree

also illustrated. The comparison6{¢ = 1, t*) between the

Fig. 4. Comparison of (37 /3£)|¢—1" for F1(¢*) =sin(t*), &, = 0.1 and

variousw values.

present estimates using thie and u-methods fom = 11,

its corresponding unknown surface heat flgg = 1,¢*)
can also be computed. Thus the effects of the measurement
condition the measurement location, the more accurate the®Nt “—(37/9§)|g=1" for w = 0% andw = 5% are showr; In
estimates of Grysa et al. [7]. It can also be found from Fig. 2 Fig. 4. The results show that the deviationsraf = 1,:%)

and “— (07T /d&)|e=1" between the present estimates using
the T- and u-methods and the numerical results obtained
from the direct problem are small even for the interior mea-
surements with the measurement eroe 5%.

The second inverse problem wip(é = 1,¢*)L/k =

polynomial guess function\ = 3) is selected to approxi-
numerical results obtained from the direct problem and the mate 7' (¢ = 1, t*) or F1(t*) on each sub-time domain for
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this inverse calculation. The unknown coefficieats(j = assumed a% (£ =1, *) = F1(t*) = t* + sin(t*) + cogt*).

1, 2,3) used to begin the iteration are taken as unity. The The second degree polynomial guess functidgh= 3) is
comparison off' (¢ = 1, t*) between the direct solution and selected to approximate the unknown surface temperature
the present estimates using the andu-methods is listed T (¢ = 1,1*) on each sub-time domain. The initial guesses
in Fig. 5 forz; =atg/L?=1,n= 11,Ar; =0.5,¢, =0.1, of C1, C2 and C3 are C1 = C» = C3 = 0.1. In order to

M = 6 and various values. Similarly, the unknown surface investigate the effects of the dimensionless measurement
heat flux can also be determined using the obtained estimatesime stepAr; and the space sizé=1/(n — 1) onT(§ =

of the unknown surface temperature. The comparison of 1,+*), three different datgArf =1, M =6,n =31,¢ =

the unknown surface temperature gradieatd7 /9&)|e—1" 1/30) (At} =0.1, M =60,n =11,¢ =1/10) and Az}
between the direct solution and the present estimates for0.05, M = 120, n = 11, £ = 1/10) are used to predict
o = 0% andw = 5% is shown in Fig. 6. It can be observed T (¢ =1,+*). Table 2 shows the comparisonBf¢ = 1, t*)
from Figs. 5 and 6 that the deviations B6f¢ = 1, r*) and between the present estimates usingTheand u-methods
“—(0T /0§)|:=1" between the direct solution and the present and the direct solution fof,, = 0.1, » = 0 and varioust
estimates are small even for the interior measurements withand Az} values. It can be observed from Table 2 that the

the measurement errer= 5%. differences of the present estimates obtained franf & 1,
M=6,n=31,¢=1/30) (At =0.1, M =60, n = 11,
4.3. Example 3: Unknown surface temperature ¢=1/10) and (At; =0.05, M =120,n =11, ¢ =1/10)
TE=1,r"=r*+sin(*) + coqr™*) are small. This implies that the present estimates are not
very sensitive toAr and £. However, the smaller values
In this example, the surface temperatufé = 1,1*) of At} and¢ can need to be chosen provided that a more

is assumed to be unknown, and its functional form is accurate estimation on the unknown surface temperature and

0.2

r ——O—— Present estmate using T-method (® =0 %) r o IF;xact . ine T-method 0%
015 —>—— Present estmate using u-method (o =0 %) x Presen: es?mate usTng -me:] Od (@= UO)
15 — . - - = X~ - Present estimate - 0 =
- — A- - Present estmate using T-method (0 =5 %) 5 resent esmare using u=mer (@=0%)
5 . — A — Present estimate using T-method (o =35 %)
L — — El- — Present estmate using u-method (o =15 %) . .
- — Bl — Present estimate using u-method (® =135 %)

= 1
| 1 I | 1
6 7 5 6 7
Fig. 5. Comparison ofT' (¢ = 1,1*) for “—(3T/3§)|g=1 = sin(t*)”, Fig. 6. Comparison of “ (37 /9&)|g=1" for “ —(8T/8&)|¢=1 = sin(t*)”,
&n = 0.1 and variousy values. &n = 0.1 and variousy values.
Table 2
Present estimates 8f(¢ = 1, +*) using theT - andu-methods fok,, = 0.1, » = 0 and varioug and Ar} values
t* T-method u-method Direct solution
AtF=1 Atf=0.1 Arf =0.05 Aty =1 Arf =01 At =0.05
£=1/30 £=1/10 £=1/10 £=1/30 ¢=1/10 £=1/10
1 23821 23821 23820 23822 23822 23821 23818
3 21511 21510 21511 21512 21512 21513 21511
5 4.3248 43248 43247 43246 43245 43246 43247
7 84108 84107 84108 84107 84105 84108 84109
9 85011 85013 85011 85012 85013 85011 85010
11 100042 100039 100043 100039 100036 100043 100044
13 143276 143275 143276 143275 143277 143275 143276
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16 160
- Exact ) ) - — — ©- — Present estimate using T-method (0w =0 %)
» - — ©- — Present estimate using T-method (0 =0 %) 140l = X~ Present estimate using u-method (0=0%) a
- — X— — Present estimate using u-method (® =0 %) . — A — Present estimate using T-method (® =5 %) /AX
~ — A — Presentestimate using T-method (@ =35 %) [ — B — Present estimate using u-method (®=5%)
12 = — B — Present estimate using u-method (®=35 %) 120 |— of
/
— /‘
100 — )é{
T B e
o b /Qx H g F
T g 80
S I L A
= £
60 — }(/
L 4
40 |— ;F
I O a/
0F/llul|||||||||||||||||||||
I o 1 2 3 4 5 6 7 8 9 10 1 12 13

Fig. 8. Comparison of £(37/3§)|g=1” for Fy(t*) = r* + sin(r*) +
Fig. 7. Comparison of (¢ = 1,+*) for F1(t*) = r* + sin(t*) + coqt*) , cogt*), &, = 0.1 and variousy values.
&, = 0.1 and variouso values.

is four times for thex-method and three times for the-
method. However, the computational time of the present
inverse scheme for obtaining the available estimates of the
unknown surface temperature and unknown surface heat flux
of the present three examples is abdut on PC PI111-500Q

the unknown surface heat flux is required. Relatively, a more
computational time can be required for these cases. The
comparisons of' (§ =1, +*) and “— (3T /0&)|e=1" between

the present estimates using tfie and u-methods and the

direct solution are, respectively, shown in Figs. 7 and 8 for owi b lcati  the Labl . h
t0=0s, &, =0.1, At} =0.1, n = 11 and various values. wing to the application of the Laplace transform scheme,

It can be found from these two figures that the deviations the unknown surface temperature and the unknown surface
of T(¢ = 1,1*) and “—(3T/3&)|s—1" between the present heat flux can be estimated simultaneously from a specific

estimates and the numerical results obtained from the directiMe- It is found from various illustrated examples that the
problem are small even for the interior measurements with PTéSent inverse scheme can give a good estimation on the
the measurement errar= 5% over the whole time domain  Unknown surface temperature and the unknown surface heat
0< 1* < 12. This implies that the present estimates perform flux even for the interior measurements with the measure-
stable behavior even for the interior measurements with Ment error. The advantages of the present inverse scheme

the measurement error. In addition, the initial guesses of &€ Not very sensitive to the initial guesses of the unknown
Ci=Cr=C3=1andC; = Cy, =Cs =10 are also coefficient, the measurement location and the interior mea-

used to estimatd' (¢ = 1, 1*) and “— (3T /0€)|¢—1". These surementsin order to obtain a more accurate estimation on
predicted results foC; _ Cr=C3=1 and 61 = Cp= the unknown surface temperature and the unknown surface

C3 = 10 are not shown in this manuscript because they are in N€at flux for the present inverse method, the smaller value of

good agreement with the estimates shown in Figs. 7 and 8.A% and the space sizecan be chosen
These results mean that the effect of the initial guesses on

the present estimates is not significant for the present inverse
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